下图是利用计算机作图软件在直角坐标平面上绘制的一列抛物线和一列直线,在焦点为的抛物线列中,是首项和公比都为的等比数列,过作斜率2的直线与相交于和(在轴的上方,在轴的下方).证明:的斜率是定值;求、、、、所在直线的方程;记的面积为,证明:数列是等比数列,并求所有这些三角形的面积的和.
(本小题满分13分)已知函数 (1)当时,求函数的单调区间; (2)若,且曲线在点(不重合)处切线的交点位于直线上,求证:两点的横坐标之和小于4; (3)当时,如果对于任意、、,,总存在以、、为三边长的三角形,试求实数的取值范围.
(本小题满分13分)如图,直角坐标系中,一直角三角形,,在轴上且关于原点对称,在边上,,的周长为12.若一双曲线以为焦点,且经过两点. (1)求双曲线的方程; (2)若一过点(为非零常数)的直线与双曲线相交于不同于双曲线顶点的两点、,且,问在轴上是否存在定点,使?若存在,求出所有这样定点的坐标;若不存在,请说明理由.
(本小题满分12分)已知数列是等比数列,且,. (1)求数列的通项公式; (2)设,求数列的前项和.
(本小题满分12分)已知四棱锥中,平面,底面是边长为的菱形,,. (1)求证:平面平面; (2)设与交于点,为中点,若二面角的余弦值为,求的值.
(本小题满分10分)设函数在处取最大值. (1)求的值; (2)在中,分别是角A,B,C的对边,已知,求角C.