如图,F1,F2是离心率为的椭圆C:(a>b>0)的左、右焦点,直线:x=-将线段F1F2分成两段,其长度之比为1:3.设A,B是C上的两个动点,线段AB的中垂线与C交于P,Q两点,线段AB的中点M在直线l上.(Ⅰ)求椭圆C的方程;(Ⅱ)求的取值范围.
已知函数.(1)求函数的极值;(2)证明:当时,;(3)证明:对任意给定的正数,总存在,使得当,恒有.
已知椭圆长轴的一个端点为圆的圆心,且点为椭圆上一点.(1)求椭圆的方程与离心率;(2)过椭圆的焦点作斜率为的直线交椭圆于点,请问以为直径的圆能否过坐标原点,若能求出此时的值,若不能请说明理由.
若各项都不相等的数列满足,(且为常数),且数列为等比数列.(1)求的值;(2)若数列,为数列的前项和,证明:
如图所示,在三棱柱中,底面,点在平面中的投影为线段上的点.(1)求证:⊥(2)点为上一点,若,,求三棱锥的体积.
新华中学高三年级(1)班有甲,乙两个数学学习小组,每组抽选名同学参加学校数学测试,成绩(满分分)的茎叶图如图所示,其中甲组的平均成绩是,乙组成绩的中位数是.(1)求茎叶图中,的值,且分别求出甲,乙两组学生成绩的方差,并根据结果判断那个组的数学成绩更好;(2)现要从测试成绩分及以上的学生随机抽取名参加某次数学活动,求名同学来自不同小组的概率.