首页 / 高中数学 / 试题详细
  • 更新 2022-09-03
  • 科目 数学
  • 题型 解答题
  • 难度 较难
  • 浏览 2111

品酒师需定期接受酒味鉴别功能测试,一种通常采用的测试方法如下:拿出 n 瓶外观相同但品质不同的酒让其品尝,要求其按品质优劣为它们排序;经过一段时间,等其记忆淡忘之后,再让其品尝这 n 瓶酒,并重新按品质优劣为它们排序,这称为一轮测试。根据一轮测试中的两次排序的偏离程度的高低为其评为。
现设 n = 4 ,分别以 a 1 , a 2 , a 3 , a 4 表示第一次排序时被排为1,2,3,4的四种酒在第二次排序时的序号,并令 X = 1 - a 1 + 2 - a 2 + 3 - a 3 + 4 - a 4 ,则 X 是对两次排序的偏离程度的一种描述。
(Ⅰ)写出 X 的可能值集合;
(Ⅱ)假设 a 1 , a 2 , a 3 , a 4 等可能地为1,2,3,4的各种排列,求 X 的分布列;
(Ⅲ)某品酒师在相继进行的三轮测试中,都有 X 2
(i)试按(Ⅱ)中的结果,计算出现这种现象的概率(假定各轮测试相互独立);
(ii)你认为该品酒师的酒味鉴别功能如何?说明理由。

登录免费查看答案和解析

品酒师需定期接受酒味鉴别功能测试,一种通常采用的测试方法如下