已知,求下列各式的值:(Ⅰ);(Ⅱ).
椭圆C:=1(a>b>0)的两个焦点分别为F1(﹣c,0),F2(c,0),M是椭圆短轴的一个端点,且满足=0,点N( 0,3 )到椭圆上的点的最远距离为5(1)求椭圆C的方程(2)设斜率为k(k≠0)的直线l与椭圆C相交于不同的两点A、B,Q为AB的中点,;问A、B两点能否关于过点P、Q的直线对称?若能,求出k的取值范围;若不能,请说明理由.
(本小题满分12分)已知等比数列中,分别是某等差数列的第5项、第3项、第2项,且公比(1)求数列的通项公式;(2)已知数列满足:的前n项和
(本小题满分12分) 某工厂每天生产某种产品最多不超过40件,并且在生产过程中产品的正品率P与每日生产产品件数x(x∈N*)间的关系为P=,每生产一件正品盈利4000元,每出现一件次品亏损2000元.(注:正品率=产品的正品件数÷产品总件数×100%).(Ⅰ)将日利润y(元)表示成日产量x(件)的函数;(Ⅱ)求该厂的日产量为多少件时,日利润最大?并求出日利润的最大值.
(本小题满分12分)设直线与椭圆相交于两个不同的点,与轴相交于点,记为坐标原点.(1)证明:(2)若且的面积及椭圆方程.
(本小题满分10分)已知命题p:函数在R上是减函数;命题q:在平面直角坐标系中,点在直线的左下方。若为假,为真,求实数的取值范围