椭圆C:=1(a>b>0)的两个焦点分别为F1(﹣c,0),F2(c,0),M是椭圆短轴的一个端点,且满足=0,点N( 0,3 )到椭圆上的点的最远距离为5(1)求椭圆C的方程(2)设斜率为k(k≠0)的直线l与椭圆C相交于不同的两点A、B,Q为AB的中点,;问A、B两点能否关于过点P、Q的直线对称?若能,求出k的取值范围;若不能,请说明理由.
已知两直线。求分别满足下列条件的的值.(1)直线过点,并且直线与垂直;(2)直线与直线平行,并且直线在轴上的截距为.
设数列的前项和为,满足,且。(Ⅰ)求的值;(Ⅱ)求数列的通项公式;(Ⅲ)设数列的前项和为,且,证明:对一切正整数, 都有:
如图,在平面直坐标系中,已知椭圆,经过点,其中e为椭圆的离心率.且椭圆与直线 有且只有一个交点。(Ⅰ)求椭圆的方程;(Ⅱ)设不经过原点的直线与椭圆相交与A,B两点,第一象限内的点在椭圆上,直线平分线段,求:当的面积取得最大值时直线的方程。
已知函数(Ⅰ)求函数的单调区间;(Ⅱ)a为何值时,方程有三个不同的实根.
在锐角中,内角对边的边长分别是, 且(Ⅰ)求(Ⅱ)若, ,求ΔABC的面积