如图,二次函数的图象与x轴交于两个不同的点A(﹣2,0)、B(4,0),与y轴交于点C(0,3),连接BC、AC,该二次函数图象的对称轴与x轴相交于点D.(1)求这个二次函数的解析式、(2)点D的坐标及直线BC的函数解析式;(3)点Q在线段BC上,使得以点Q、D、B为顶点的三角形与△ABC相似,求出点Q的坐标;(4)在(3)的条件下,若存在点Q,请任选一个Q点求出△BDQ外接圆圆心的坐标.
如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B (1)求证:△ADF∽△DEC; (2)若AB=8,AD=6,AF=4,求AE的长.
如图,在方格纸上,△ABC与△A1B1C1是关于点O为位似中心的位似图形,它们的顶点都在格点上. (1)画出位似中心O; (2)求出△ABC与△A1B1C1的位似比; (3)以O点为位似中心,再画一个△A2B2C2使它与△ABC的位似比等于3.
解方程(本题共4小题,每小题4分,共16分) (1)x2-2x-99=0 (2)3x2-6x+1=0 (3)x(x+2)=5x+10 (4)(x-2)2=(2x+3)2
如图,已知抛物线与轴的一个交点为A(3,0),与轴的交点为B(0,3),其顶点为C,对称轴为. (1)求抛物线的解析式: (2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标; (3)将△AOB沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形与△ABC重叠部分的面积记为S,用m的代数式表示S.
在△ABC中,∠A=90°,点D在线段BC上,∠EDB=∠C,BE⊥DE,垂足为E,DE与AB相交于点F. (1)当AB=AC时,(如图1), ①∠EBF=° ②探究线段BE与FD的数量关系,并加以证明; (2)当AB=kAC时(如图2),求的值(用含k的式子表示).