为增强市民的节水意识,某市对居民用水实行"阶梯收费":规定每户每月不超过月用水标准部分的水价为1.5元/吨,超过月用水标准量部分的水价为2.5元/吨.该市小明家5月份用水12吨,交水费20元.请问:该市规定的每户月用水标准量是多少吨?
国庆节期间,某公园游戏场举行一场活动.有一种游戏规则是:在一个装有8个红球和若干白球(每个球除颜色外,其他都相同)的袋中,随机摸一个球,摸到一个红球就得到一个世博会吉祥物海宝玩具.已知参加这种游戏的儿童有40000人,公园游戏场发放海宝玩具8000个. (1)求参加此次活动得到海宝玩具的频率? (2)请你估计袋中白球的数量接近多少?
如图,是半圆的直径,为圆心,、是半圆的弦,且. (1)判断直线是否为⊙O的切线,并说明理由; (2)如果,,求的长.
如图,抛物线y=ax2+bx﹣4与x轴交于A(4,0)、B(﹣2,0)两点,与y轴交于点C,点P是线段AB上一动点(端点除外),过点P作PD∥AC,交BC于点D,连接CP. (1)求该抛物线的解析式; (2)当动点P运动到何处时,BP2=BD•BC; (3)当△PCD的面积最大时,求点P的坐标.
如图1,已知Rt△ABC中,,AC=8cm,BC=6cm.点P由B出发沿BA方向向点A匀速运动,同时点Q由A出发沿AC方向向点C匀速运动,它们的速度均为2cm/s.以AQ、PQ为边作平行四边形AQPD,连接DQ,交AB于点E.设运动的时间为t(单位:s)(0≤t≤4).解答下列问题: (1)用含有t的代数式表示AE=_____________; (2)当t为何值时,DQ=AP; (3)如图2,当t为何值时,平行四边形AQPD为菱形; (4)直接写出:当DQ的长最小时,t的值.
如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC交AC的延长线于点E,OE交AD于点F。 (1)求证:DE是⊙O的切线; (2)若,求的值; (3)在(2)的条件下,若⊙O直径为10,求△EFD的面积.