钓鱼岛是我国固有领土,为测量钓鱼岛东西两端A,B的距离,如图2,我勘测飞机在距海平面垂直高度为1公里的点C处,测得端点A的俯角为45°,然后沿着平行于AB的方向飞行3.2公里到点D,并测得端点B的俯角为37°,求钓鱼岛两端AB的距离.(结果精确到0.1公里,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41)
已知:用2辆A型车和1辆B型车装满货物一次可运货10吨; 用1辆A型车和2辆B型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题: (1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨? (2)请你帮该物流公司设计租车方案; (3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.
如图1,过△ABC的顶点A作高AD,将点A折叠到点D(如图2),这时EF为折痕,且△BED和△CFD都是等腰三角形,再将△BED和△CFD沿它们各自的对称轴EH、FG折叠,使B、C两点都与点D重合,得到一个矩形EFGH(如图3),我们称矩形EFGH为△ABC的边BC上的折合矩形. (1)若△ABC的面积为6,则折合矩形EFGH的面积为; (2)如图4,已知△ABC,在图4中画出△ABC的边BC上的折合矩形EFGH; (3)如果△ABC的边BC上的折合矩形EFGH是正方形,且BC=2a,那么,BC边上的高AD=,正方形EFGH的对角线长为.
某校为了解八年级300名学生期中考的数学成绩,随机抽查了该年级50名学生的期中考数学成绩进行分析,绘制了不完整的频数分布表和频数分布直方图. 频数分布表
(1)以上分组的组距=; (2)补全频数分布表和频数分布直方图; (3)请你估计该校八年级期中考数学成绩优秀(不低于80分为优秀)的总人数.
如图,已知CB是⊙O的弦,CD是⊙O的直径,点A为CD延长线上一点,BC=AB,∠CAB=30°. (1)求证:AB是⊙O的切线;(2)若⊙O的半径为2,求的长.
解方程:.