已知曲线上任意一点到直线的距离是它到点距离的倍;曲线是以原点为顶点,为焦点的抛物线.(Ⅰ)求,的方程;(Ⅱ)过作两条互相垂直的直线,其中与相交于点,与相交于点,求四边形面积的取值范围.
(本小题满分10分)直三棱柱ABC—A′B′C′中,AC=BC=AA′,∠ACB=90°,D、E分别为AB、BB′的中点.(1)求证:;(2)求证:平面.
如图所示,平行六面体ABCD—A1B1C1D1中,以顶点A为端点的三条棱长都为1,且两两夹角为60°.(1)求AC1的长;(2)求BD1与AC夹角的余弦值.
设数列的前n项和为,且满足.(1)求;(2)猜想数列的通项公式,并用数学归纳法证明
(本小题满分10分)已知函数f(x)=ax3+cx+d(a≠0)是R上的奇函数,当x=1时,f(x)取得极值-2.(1)求函数f(x)的解析式;(2)求函数f(x)的单调区间和极大值;
(本小题满分12分)已知函数.(Ⅰ)求函数的单调递增区间;(Ⅱ)证明:当时,;(Ⅲ)确定实数的所有可能取值,使得存在,当时,恒有.