一个盒子装有六张卡片,上面分别写着如下六个定义域为的函数:,,,,,.(1)现从盒子中任取两张卡片,将卡片上的函数相加得一个新函数,求所得函数是奇函数的概率;(2)现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶函数的卡片则停止抽取,否则继续进行,求抽取次数的分布列和数学期望.
已知椭圆过点,且离心率为.斜率为的直线与椭圆交于A、B两点,以为底边作等腰三角形,顶点为. (1)求椭圆的方程; (2)求△的面积.
已知等比数列为正项递增数列,且,,数列. (1)求数列的通项公式; (2),求.
已知曲线的参数方程是(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是. (1)写出的极坐标方程和的直角坐标方程; (2)已知点、的极坐标分别是、,直线与曲线相交于、两点,射线与曲线相交于点,射线与曲线相交于点,求的值.
如图:是⊙的直径,是弧的中点,⊥,垂足为,交于点. (1)求证:=; (2)若=4,⊙的半径为6,求的长.
已知椭圆(a>b>0)的离心率为,且过点(). (1)求椭圆E的方程; (2)设直线l:y=kx+t与圆(1<R<2)相切于点A,且l与椭圆E只有一个公共点B. ①求证:; ②当R为何值时,取得最大值?并求出最大值.