如图,四棱锥的底面是正方形,平面,为上的点,且.(1)证明:;(2)若,求二面角的余弦值.
(本题满分12分) 已知函数 (1)求a,b的值; (2)求的最大值及取得最大值时x的集合; (3)写出函数在[0,]上的单调递减区间.
已知△的内角所对的边分别为且. (1) 若, 求的值; (2) 若△的面积求的值.
设条件p:2x2-3x+1≤0,条件q:x2-(2a+1)x+a(a+1)≤0,若是的必要不充分条件,求实数a的去值范围.
已知函数 (1)求的值; (2)求的最大值和最小值。
(本题12分) 如图1所示,在平行六面体ABCD—A1B1C1D1中,已知AB=5,AD=4,AA1=3,AB⊥AD,∠A1AB=∠A1AD=。(1)求证:顶点A1在底面ABCD上的射影O在∠BAD的平分线上; (2)求这个平行六面体的体积。 图1