如图,海上有两个小岛相距10,船O将保持观望A岛和B岛所成的视角为,现从船O上派下一只小艇沿方向驶至处进行作业,且.设。(1)用分别表示和,并求出的取值范围;(2)晚上小艇在处发出一道强烈的光线照射A岛,B岛至光线的距离为,求BD的最大值.
设 (1)讨论的奇偶性; (2)判断函数在(0,)上的单调性并用定义证明。
已知全集,集合, (1)求;(2)求
设函数 (1)当时,求的极值; (2)当时,求的单调区间; (3)当时,对任意的正整数,在区间上总有个数使得成立,试求正整数的最大值。
设椭圆的离心率,右焦点到直线的距离为坐标原点。 (I)求椭圆的方程; (II)过点作两条互相垂直的射线,与椭圆分别交于两点,证明点到直线的距离为定值,并求弦长度的最小值.
本着健康、低碳的生活理念,租自行车骑游的人越来越多。某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费标准为2元(不足1小时的部分按1小时计算)。有甲乙两人相互独立来该租车点租车骑游(各租一车一次),设甲、乙不超过两小时还车的概率分别为;两小时以上且不超过三小时还车的概率分别为;两人租车时间都不会超过四小时。 (Ⅰ)求出甲、乙两人所付租车费用相同的概率; (Ⅱ)设甲、乙两人所付的租车费用之和为随机变量,求的分布列与数学期望;