设椭圆的左焦点为,离心率为,过点且与轴垂直的直线被椭圆截得的线段长为(1)求椭圆方程;(2)过点的直线与椭圆交于不同的两点,当面积最大时,求
(本小题满分12分) 已知. (1)求的值; (2)求的值.
(本小题满分14分) 已知函数(,,且)的图象在处的切线与轴平行. (I) 试确定、的符号; (II) 若函数在区间上有最大值为,试求的值.
(本小题满分14分) 在数列中, (1)求的值; (2)证明:数列是等比数列,并求的通项公式; (3)求数列。
(本小题满分14分) 已知圆:和圆,直线与圆相切于点;圆的圆心在射线上,圆过原点,且被直线截得的弦长为. (Ⅰ)求直线的方程; (Ⅱ)求圆的方程.
(本小题满分14分) 如图,已知正三棱柱的底面边长是,、E是、BC的中点,AE=DE (1)求此正三棱柱的侧棱长; (2)求正三棱柱表面积.