设是实数,(1)试确定的值,使成立;(2)求证:不论为何实数,均为增函数
(本小题满分12分)已知向量m,n,函数m·n. (1)若,求的值;(2)在锐角△ABC中,角A,B,C的对边分别是,且满足,求的取值范围.
(本小题满分14)设函数 (1)求函数的定义域; (2)问是否存在最大值与最小值?如果存在,请把它写出来;如果不存在,请说明理由.
(本小题满分12分)已知函数f(X)=X+2Xtan-1,X〔-1,〕其中(-,) (1)当=-时,求函数的最大值和最小值 (2)求的取值的范围,使Y=f(X)在区间〔-1,〕上是单调函数
(本小题满分12分)若函数满足:对定义域内任意两个不相等的实数,都有,则称函数为H函数.已知,且为偶函数. (1) 求的值; (2) 求证:为H函数; (3) 试举出一个不为H函数的函数,并说明理由.
(本小题满分12分)如图:A、B两城相距100 km,某天燃气公司计划在两地之间建一天燃气站D 给A、B两城供气. 已知D地距A城x km,为保证城市安全,天燃气站距两城市的距离均不得少于10km . 已知建设费用y (万元)与A、B两地的供气距离(km)的平方和成正比,当天燃气站D距A城的距离为40km时, 建设费用为1300万元.(供气距离指天燃气站距到城市的距离) (1)把建设费用y(万元)表示成供气距离x (km)的函数,并求定义域; (2)天燃气供气站建在距A城多远,才能使建设供气费用最小.,最小费用是多少?