一种放射性元素,最初的质量为,按每年衰减.(1)求年后,这种放射性元素的质量与的函数关系式;(2)求这种放射性元素的半衰期(质量变为原来的时所经历的时间).()
过抛物线y2=4ax(a>0)的焦点F,作相互垂直的两条焦点弦AB和CD,求|AB|+|CD|的最小值.
某抛物线型拱桥的跨度是20米,拱高4米.在建桥时每隔4米需要一支柱支撑,其中最长的支柱是多少米?
已知椭圆的两焦点为F1(0,﹣1)、F2(0,1),直线y=4是椭圆的一条准线. (1)求椭圆方程; (2)设点P在椭圆上,且|PF1|﹣|PF2|=1,求tan∠F1PF2的值.
直线l过点M(1,1),与椭圆+=1交于P,Q两点,已知线段PQ的中点横坐标为,求直线l的方程.
直线l:y=mx+1,双曲线C:3x2﹣y2=1,问是否存在m的值,使l与C相交于A,B两点,且以AB为直径的圆过原点.