用分层抽样方法从高中三个年级的相关人员中抽取若干人组成研究小组,有关数据见下表:(单位:人)(Ⅰ)求,;(Ⅱ)若从高二、高三年级抽取的人中选人,求这2人都来自高二年级的概率.
(本题满分15分 )已知函数.(1)求函数的最大值;(2)若,不等式恒成立,求实数的取值范围;(3)若,求证:.
(本题满分15分 )已知椭圆经过点,一个焦点是.(Ⅰ)求椭圆的方程;(Ⅱ)设椭圆与轴的两个交点为、,点在直线上,直线、分别与椭圆交于、两点.试问:当点在直线上运动时,直线是否恒经过定点?证明你的结论.
(本题满分14分 )已知函数(1)求的值;(2)已知数列,求证数列是等差数列;(3)已知,求数列的前n项和.
(本题满分14分 )如图,在三棱柱中,所有的棱长都为2,. (1)求证:;(2)当三棱柱的体积最大时,求平面与平面所成的锐角的余弦值.
(本题满分14分 )在锐角中,已知内角A、B、C所对的边分别为a、b、c,且满足2sinB(2cos2-1)=-cos2B. (1)求B的大小; (2)如果,求的面积的最大值.