已知等差数列的首项,,前项和为.(I)求及;(Ⅱ)设,,求的最大值.
数列的各项均为正值,,对任意,,都成立.求数列、的通项公式;当且时,证明对任意都有成立.
.设的图象上任意两点,且,已知点M的横坐标为.(I)求证:M点的纵坐标为定值;(Ⅱ)若;(Ⅲ)已知为数列的前n项和,若都成立,试求的取值范围.
设=(a>0)为奇函数,且min=,数列{an}与{bn}满足 如下关系:a1=2, ,. (1)求f(x)的解析表达式;(2) 证明:当n∈N+时, 有bn.
如图所示,动圆与定圆B:x2+y2-4y-32=0内切且过定圆内的一个定点A(0,-2),求动圆圆心P的轨迹方程.
如图,线段AB的两个端点A、B分别在x轴、y轴上滑动,|AB|=8,点M是AB上一点,且|AM|=3,点M随线段AB的运动而变化,求点M的轨迹.