已知函数的定义域为区间.(1)求函数的极大值与极小值;(2)求函数的最大值与最小值.
如图,四边形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=2,E、F分别在BC、AD上,EF∥AB.现将四边形ABEF沿EF折起,使得平面ABEF平面EFDC.(1)当,是否在折叠后的AD上存在一点,使得CP∥平面ABEF?若存在,求出P点位置,若不存在,说明理由;(2)设BE=x,问当x为何值时,三棱锥ACDF的体积有最大值?并求出这个最大值.
(本小题满分12分)在中,已知角A、B、C所对的边分别为,直线与直线互相平行(其中).(1)求角A的值;(2)若的取值范围.
(本小题满分12分)“等比数列 中,,且 是 和 的等差中项,若 (1)求数列 的通项公式;(2)求数列的前项和.
(不等式选讲)(本小题满分10分)设函数(1)求不等式的解集; (2)若不等式的解集非空,求实数的取值范围.
(极坐标与参数方程选讲)(本小题满分10分)在平面直角坐标系中,以坐标原点为极点,轴的非负半轴为极轴建立坐标系.已知点的极坐标为,直线的极坐标方程为,且点在直线上.(1)求的值及直线的直角坐标方程;(2)圆的参数方程为,(为参数),试判断直线与圆的位置关系.