(本小题满分12分)设函数的图象的最高点D的坐标为(2,),由最高点运动到相邻的最低点F时,曲线与x轴相交于点E(6,0).(1)求的值;(2)求函数,使其图象与图象关于直线对称.
设定义在R上的函数f(x)=ax3+bx2+cx+d满足:①函数f(x)的图像过点P(3,-6);②函数f(x)在x1,x2处取极值,且|x1-x2|=4;③函数y=f(x-1)的图像关于点(1,0)对称。(1)求f(x)的表达式;(2)若α,β∈R,求证;(3)求过点P(3,-6)与函数f(x)的图像相切的直线方程。
随着机构改革工作的深入进行,各单位要减员增效,有一家公司现有职员人(140<<420,且为偶数),每人每年可创利万元.据评估,在经营条件不变的前提下,每裁员1人,则留岗职员每人每年多创利万元,但公司需付下岗职员每人每年万元的生活费,并且该公司正常运转所需人数不得小于现有职员的,为获得最大的经济效益,该公司应裁员多少人?
定义在R上的单调函数f(x)满足f(3)=log3且对任意x,y∈R都有f(x+y)=f(x)+f(y).(1)求证f(x)为奇函数;(2)若f(k·3)+f(3-9-2)<0对任意x∈R恒成立,求实数k的取值范围.
设关于x的函数f(x)=-1-2a+2cos2x-2acosx的最小值为g(a).(1)写出g(a)的表达式;(2)当时,求a的值,并求此时f(x)的最大值。
已知幂函数为偶函数且在区间(0,+∞)上是单调递减函数。(1)求函数f(x)的解析式;(2)讨论函数的奇偶性。(10分)