已知二次函数满足条件:①;②的最小值为。(1)求函数的解析式; (2)设数列的前项积为,且,求数列的通项公式;(3)在(2)的条件下,若是与的等差中项,试问数列中第几项的值最小?求出这个最小值。
已知锐角中内角、、所对边的边长分别为、、,满足,且.(Ⅰ)求角的值;(Ⅱ)设函数,图象上相邻两最高点间的距离为,求的取值范围.
已知函数,.(Ⅰ)若恒成立,求实数的值;(Ⅱ)设有两个极值点、(),求实数的取值范围,并证明.
设分别为直角坐标系中与轴、轴正半轴同方向的单位向量,若向量且.(Ⅰ)求点的轨迹的方程;(Ⅱ)设抛物线的顶点为,焦点为.直线过点与曲线交于两点,是否存在这样的直线,使得以为直径的圆过点,若存在,求出直线方程;若不存在,请说明理由?
在四棱锥中,,,平面,,为的中点。(Ⅰ)求证:平面;(Ⅱ)平面内是否存在一点,使平面?若存在,确定点的位置;若不存在,请说明理由。
定义为个正数的“均倒数”.已知各项均为正数的数列的前项的“均倒数”为.(Ⅰ)求数列的通项公式;(Ⅱ)设,试求数列的前项和.