如图,有两条相交成角的直路,交点为,甲、乙分别在上,起初甲离点,乙离点,后来甲沿的方向,乙沿的方向,同时以的速度步行。(1)起初两人的距离是多少?(2)小时后两人的距离是多少?(3)什么时候两人的距离最短,并求出最短距离。
(本小题满分12分) 设函数,图象的一条对称轴是直线. (1)求; (2)求函数的单调增区间; (3)画出函数在区间上的图象.
设是函数的两个极值点,且, (1)证明:; (2)证明:。
已知二次函数的图像经过点,且点M在轴的下方, (1)求证:的图像与轴交于不同的两点; (2)设的图像与轴交于点,求证:介于之间。
已知数列满足,其中为的前项和, (1)用; (2)证明数列是等比数列; (3)求和。
在△ABC中,, (1)求角C的大小; (2)若△ABC最大边的边长为,求最小边的边长。