在数列中,、,且.(Ⅰ) 求、,猜想的表达式,并加以证明;(Ⅱ) 设,求证:对任意的自然数,都有.
(本小题满分12分)已知等比数列的首项,公比,数列前项的积记为. (1)求使得取得最大值时的值; (2)证明中的任意相邻三项按从小到大排列,总可以使其成等差数列,如果所有这些等差数列的公差按从小到大的顺序依次设为,求数列的通项公式. (参考数据)
(本小题满分12分)如图是三棱柱的三视图,正(主)视图和俯视图都是矩形,侧(左)视图为等边三角形,为的中点. (1)求证:∥平面; (2)设垂直于,求二面角的大小.
(本小题满分12分)已知正方形的边长为2,分别是边的中点. (1)在正方形内部随机取一点,求满足的概率; (2)从这八个点中,随机选取两个点,记这两个点之间的距离的平方为,求随机变量的分布列与数学期望.
(本小题满分12分)已知函数. (1)求的最小正周期和单调增区间; (2)设,若求的大小.
已知函数f(x)满足2f(x+2)=f(x),当x∈(0,2)时,f(x)=lnx+ax (),当x∈(―4,―2)时,f(x)的最大值为―4. (1)求x∈(0,2)时,f(x)的解析式; (2)是否存在实数b使得不等式对于恒成立?若存在,求出实数b的取值集合;若不存在,请说明理由.