某中学对高三年级进行身高统计,测量随机抽取的20名学生的身高,其频率分布直方图如下(单位:cm)(1)根据频率分布直方图,求出这20名学生身高中位数的估计值和平均数的估计值;(2)在身高为140—160的学生中任选2个,求至少有一人的身高在150—160之间的概率.
已知集合,,且,求实数的取值范围。
已知向量,,其中,设,且函数的最大值为。 (Ⅰ)求函数的解析式; (Ⅱ)设,求函数的最大值和最小值以及对应的值; (Ⅲ)若对于任意的实数,恒成立,求实数的取值范围。
已知,且是方程的两根,试求: (Ⅰ)的值; (Ⅱ)的值.
已知函数,(其中且)。 (Ⅰ)求函数的定义域; (Ⅱ)判断函数的奇偶性并给出证明; (Ⅲ)若时,函数的值域是,求实数的值。
如图2,已知是半径为,圆心角为的扇形,是扇形弧上的动点,是扇形的内接矩形.记,求当角取何值时,矩形的面积最大?并求出这个最大面积。 图2