设数列满足:是整数,且是关于x的方程的根.(1)若且n≥2时,求数列{an}的前100项和S100;(2)若且求数列的通项公式.
已知,函数,(其中为自然对数的底数). (1)判断函数在上的单调性; (2)是否存在实数,使曲线在点处的切线与轴垂直? 若存在,求出的值;若不存在,请说明理由.
已知椭圆的对称轴为坐标轴,且抛物线的焦点是椭圆的一个焦点,又点在椭圆上. (1)求椭圆M的方程; (2)已知直线的方向向量为 ,若直线与椭圆交于两点,求面积的最大值.
在几何体中,平面,平面,. (1)设平面与平面的交线为直线,求证:平面; (2)设是的中点,求证:平面平面; (3)求几何体的体积.
已知关于的二次函数, (1)设集合,和分别从集合和中随机取出一个数作为和,求函数在区间上是增函数的概率; (2)设是区域的随机点,求函数在区间上是增函数的概率。
已知等比数列的公比,前项和. (1)求数列的通项公式; (2)若函数在处取得最大值,且最大值为,求函数的解析式.