(本小题满分12分)已知函数,(1)当时,求的最大值和最小值(2)若在上是单调函数,且,求的取值范围
设函数,,若是函数的极值点. (1)求实数a的值; (2)若恒成立,求整数n的最大值.
如图,在四棱锥中,底面ABCD是菱形,,侧面底面ABCD,并且,F为SD的中点. (1)证明:平面FAC; (2)求三棱锥的体积.
某校联合社团有高一学生126人,高二学生105人,高三学生42人,现 用分层抽样的方法从中抽取13人进行关于社团活动的问卷调查.设问题的选择分为“赞同”和“不赞同”两种,且每人都做出了一种选择.下面表格中提供了被调查学生答卷情况的部分信息. (1)完成下列统计表: (2)估计联合社团的学生中“赞同”的人数; (3)从被调查的高二学生中选取2人进行访谈,求选到的两名学生中恰好有一人“赞同”的概率.
已知向量,,,设函数的部分图象如图所示,A为图象的最低点,B,C为图象与x轴的交点,且为等边三角形,其高为. (1)求的值及函数的值域; (2)若,且,求的值.
在直角坐标平面内,直线l过点P(1,1),且倾斜角α=.以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知圆C的极坐标方程为ρ=4sinθ. (1)求圆C的直角坐标方程; (2)设直线l与圆C交于A、B两点,求|PA|·|PB|的值.