提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度(单位:千米/小时)是车流密度(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过40辆/千米时,车流速度为80千米/小时.研究表明:当时,车流速度是车流密度的一次函数.(1)当时,求函数的表达式;(2)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位: 辆/小时)f ,可以达到最大,并求出最大值.
已知是首项为19,公差为-2的等差数列,为的前项和. (Ⅰ)求通项及; (Ⅱ)设是首项为1,公比为3的等比数列,求数列的通项公式及其前项和.
编号为的16名篮球运动员在某次训练比赛中的得分记录如下:
(Ⅰ)将得分在对应区间内的人数填入相应的空格;
(Ⅱ)从得分在区间内的运动员中随机抽取2人, (i)用运动员的编号列出所有可能的抽取结果; (ii)求这2人得分之和大于50的概率.
设的导函数为,若函数的图象关于直线对称,且. (Ⅰ)求实数,的值; (Ⅱ)求函数的极值。
已知直线 l : y = x + m , m ∈ R .
(I)若以点 M 2 , 0 为圆心的圆与直线 l 相切与点 P ,且点 P 在 y 轴上,求该圆的方程; (II)若直线 l 关于x轴对称的直线为 l ` ,问直线 l ` 与抛物线 C : x 2 = 4 y 是否相切?说明理由.
已知函数的图象经过其中为自然对数的底数,. (Ⅰ)求实数; (Ⅱ)求的单调区间; (Ⅲ)证明:对于任意的,都有成立.