如图,在平面直角坐标系 x O y 中,椭圆 E : x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 的左、右焦点分别为 F 1 , F 2 , 离心率为 1 2 ,两准线之间的距离为 8 .点P在椭圆E上,且位于第一象限,过点 F 1 作直线 P F 1 的垂线 l 1 , 过点 F 2 作直线 P F 2 的垂线 l 2 .
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)若直线 l 1 , l 2 的交点Q在椭圆E上,求点P的坐标.
等差数列的前项和为,且. (1)数列满足:求数列的通项公式; (2)设求数列的前项和
在△ABC中,角A,B,C的对边分别为,且A,B,C成等差数列。 (1)若,,求△ABC的面积; (2)若成等比数列,试判断△ABC的形状。
已知直线l1:x+my+6=0,l2:(m-2)x+3y+2m=0, 求m的值,使得:(1)l1⊥l2;(2) l1∥l2
在等差数列中,,,记数列的前项和为. (1)求数列的通项公式; (2)是否存在正整数、,且,使得、、成等比数列?若存在,求出所有符合条件的、的值;若不存在,请说明理由.
已知集合,, (1)若,求的取值范围; (2)是否存在实数使得?若存在求出的取值范围;若不存在,请说明理由.