如图,在平面直角坐标系 x O y 中,椭圆 E : x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 的左、右焦点分别为 F 1 , F 2 , 离心率为 1 2 ,两准线之间的距离为 8 .点P在椭圆E上,且位于第一象限,过点 F 1 作直线 P F 1 的垂线 l 1 , 过点 F 2 作直线 P F 2 的垂线 l 2 .
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)若直线 l 1 , l 2 的交点Q在椭圆E上,求点P的坐标.
(拓展深化)如图,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B=α.且DM交AC于F,ME交BC于G, (1)写出图中三对相似三角形,并证明其中的一对; (2)连接FG,如果α=45°,AB=4,AF=3,求FG的长.
如图,△ABC是直角三角形,∠ACB=90°,CD⊥AB于D,E是AC的中点,ED的延长线与CB的延长线交于点F. 求证:FD2=FB·FC.
如图,在△ABC中,延长BC到D,使CD=BC,取AB的中点F,连接FD交AC于点E. (1)求的值; (2)若AB=a,FB=EC,求AC的长.
如图所示,在△ABC中,AE∶EB=1∶3,BD∶DC=2∶1,AD与CE相交于F,求+的值.
已知AD是△ABC的内角平分线,求证:=.