如图,在平面直角坐标系 x O y 中,椭圆 E : x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 的左、右焦点分别为 F 1 , F 2 , 离心率为 1 2 ,两准线之间的距离为 8 .点P在椭圆E上,且位于第一象限,过点 F 1 作直线 P F 1 的垂线 l 1 , 过点 F 2 作直线 P F 2 的垂线 l 2 .
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)若直线 l 1 , l 2 的交点Q在椭圆E上,求点P的坐标.
.已知函数。(1)讨论函数的单调性;(2)当时,设,若时,恒成立。求整数的最大值。
设数列的前项和为,且方程有一根为。(Ⅰ)求;(Ⅱ)猜想数列的通项公式,并给出严格的证明。
甲、乙两人参加某电视台举办的答题闯关游戏,按照规则,甲先从6道备选题中一次性抽取3道题独立作答,然后由乙回答剩余3道题,每人答对其中2题就停止答题,即为闯关成功。已知6道备选题中,甲能答对其中的4道题,乙答对每道题的概率都是。(Ⅰ)求甲、乙至少有一人闯关成功的概率;(Ⅱ)设乙答对题目的个数为,求的方差;(Ⅲ)设甲答对题目的个数为,求的分布列及数学期望。
已知函数在内有极值,求实数的范围。
.设函数且。(Ⅰ)求的解析式及定义域。(Ⅱ)求的值域。