已知函数 f ( x ) = x 3 + a x 2 + bx + 1 ( a > 0 , b ∈ R ) 有极值,且导函数 f ' ( x ) 的极值点是 f ( x ) 的零点.(极值点是指函数取极值时对应的自变量的值)
(Ⅰ)求b关于a的函数关系式,并写出定义域;
(Ⅱ)证明: b 2 > 3 a ;
(Ⅲ)若 f ( x ) , f ' ( x ) 这两个函数的所有极值之和不小于 ﹣ 7 2 ,求a的取值范围.
判断下列问题是排列问题还是组合问题?并计算出结果. 高三年级学生会有人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?
是否存在正方形ABCD,它的对角线AC在直线x+y-2=0上,顶点B、D在抛物线y2=4x上?若存在,试求出正方形的边长;若不存在,试说明理由.
抛物线y=-与过点M(0,-1)的直线l相交于A、B两点,O为坐标原点,若直线OA和OB斜率之和为1,求直线l的方程.
已知圆C过定点A(0,p)(p>0),圆心C在抛物线x2=2py上运动,若MN为圆C在x轴上截得的弦,设|AM|=m,|AN|=n,∠MAN=θ. (1)当点C运动时,|MN|是否变化?写出并证明你的结论? (2)求+的最大值,并求取得最大值时θ的值和此时圆C的方程.若不存在,说明理由
△中,内角的对边分别为,已知成等比数列, 求(1)的值;(2)设,求的值.