设递增等差数列的前n项和为,已知,是和的等比中项.(l)求数列的通项公式;(2)求数列的前n项和.
已知椭圆C的中心在原点,焦点在轴上,长轴长是短轴长的倍,其上一点到右焦点的最短距离为.(1)求椭圆C的标准方程;(2)若直线:与圆O:相切,且交椭圆C于A、B两点,求当△AOB的面积最大时直线的方程.
已知数列中.当时.()(Ⅰ)证明:为等比数列;(Ⅱ)求数列的通项;(Ⅲ)若数列满足,求的前项和.
已知四棱锥的三视图如下图所示,是侧棱上的动点.(1) 求四棱锥的体积;(2) 是否不论点在何位置,都有?证明你的结论;(3) 若点为的中点,求二面角的大小.
已知.(Ⅰ)若函数在处的切线与直线垂直,且,求函数的解析式;(Ⅱ)若在区间上单调递减,求的取值范围.
西安市某中学号召学生在2010年春节期间至少参加一次社会公益活动.经统计,该校高三(1)班共50名学生参加公益活动情况如图所示.(Ⅰ)从高三(1)班任选两名学生,求他们参加活动次数恰好相等的概率;(Ⅱ)从高三(1)班任选两名学生,用表示这两人参加活动次数之差的绝对值,求随机变量的分布列及均值.