已知椭圆C的中心在原点,焦点在轴上,长轴长是短轴长的倍,其上一点到右焦点的最短距离为.(1)求椭圆C的标准方程;(2)若直线:与圆O:相切,且交椭圆C于A、B两点,求当△AOB的面积最大时直线的方程.
已知函数. (Ⅰ)求函数的最小正周期; (Ⅱ)求函数在上的最小值,并写出取最小值时相应的值.
设,. (Ⅰ)证明:; (Ⅱ)求证:在数轴上,介于与之间,且距较远; (Ⅲ)在数轴上,之间的距离是否可能为整数?若有,则求出这个整数;若没有, 说明理由.
已知半径为2,圆心在直线上的圆C. (Ⅰ)当圆C经过点A(2,2)且与轴相切时,求圆C的方程; (Ⅱ)已知E(1,1),F(1,-3),若圆C上存在点Q,使,求圆心的横坐标的取值范围.
已知函数. (Ⅰ)设,求的最小值; (Ⅱ)如何上下平移的图象,使得的图象有公共点且在公共点处切线相同.
直三棱柱中,,,,D为BC中点. (Ⅰ)求证:; (Ⅱ)求证:; (Ⅲ)求二面角的正弦值.