已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点B恰好是抛物线的焦点,且离心率等于,直线与椭圆C交于M,N两点。(1)求椭圆C的方程;(2)椭圆C的右焦点F是否可以为的垂心?若可以,求出直线的方程;若不可以,请说明理由。
已知函数的部分图像如图所示.(1)求函数f(x)的解析式,并写出f(x)的单调减区间;(2)的内角分别是A,B,C.若f(A)=1,,求sinC的值.
已知函数f(x)=ax2+ln(x+1).(1)当a=时,求函数f(x)的单调区间;(2)当时,函数y=f(x)图像上的点都在所表示的平面区域内,求实数a的取值范围;(3)求证:(其中,e是自然数对数的底数)
如图,椭圆C:的左顶点为A,M是椭圆C上异于点A的任意一点,点P与点A关于点M对称.(1)若点P的坐标,求m的值;(2)若椭圆C上存在点M,使得,求m的取值范围.
设等比数列{an}的前n项和为Sn.已知an+1=2Sn+2()(1)求数列{an}的通项公式;(2)在an与an+1之间插入n个数,使这n+2个数组成一个公差为dn的等差数列,①在数列{dn}中是否存在三项dm,dk,dp(其中m,k,p成等差数列)成等比数列?若存在,求出这样的三项,若不存在,说明理由;②求证:.
如图,在四棱锥P-ABCD中,ABCD为平行四边形,平面PAB,,.M为PB的中点.(1)求证:PD//平面AMC;(2)求锐二面角B-AC-M的余弦值.