已知四棱锥的三视图如下图所示,是侧棱上的动点.(1) 求四棱锥的体积;(2) 是否不论点在何位置,都有?证明你的结论;(3) 若点为的中点,求二面角的大小.
已知集合,. 求:(1);(2);(3).
设二次函数. (1)当时,求函数在上的最小值的表达式; (2)若方程有两个非整数实根,且这两实数根在相邻两整数之间,试证明存在整数,使得.
定义域为的函数满足:对任意的有,且当时,有,. (1)证明:在上恒成立; (2)证明:在上是减函数; (3)若时,不等式恒成立,求实数的取值范围.
某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示. (Ⅰ)写出图一表示的市场售价与时间的函数关系式;写出图二表示的种植成本与时间的函数关系式; (Ⅱ)认定市场售价减去种植成本为纯收益,问何时上市的西红柿收益最大?(注:市场售价和种植成本的单位:元/,时间单位:天)
设函数. (1)证明:函数在上单调递增; (2)解不等式.