如图是一个直三棱柱被削去一部分后的几何体的直观图与三视图中的侧视图、俯视图.在直观图中,是的中点.又已知侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.(1)求证:EM∥平面ABC;(2)试问在棱DC上是否存在点N,使NM⊥平面? 若存在,确定点N的位置;若不存在,请说明理由.
已知函数(其中). (1)若为的极值点,求的值; (2)在(1)的条件下,解不等式.
在中,角所对的边分别为,且. (1)求的值; (2)若,求的面积.
已知函数,设命题:“的定义域为”; 命题:“的值域为” . (1)分别求命题、为真时实数的取值范围; (2)是的什么条件?请说明理由.
已知向量a=(cosx,-),b=(sinx,cos2x),x∈R,设函数f(x)=a·b. (1)求f(x)的最小正周期; (2)求f(x)在[0,]上的最大值和最小值.
已知幂函数在上单调递增,函数. (1)求的值; (2)当时,记,的值域分别为集合,若,求实数的取值范围.