已知圆,直线 ,与圆交与两点,点.(1)当时,求的值;(2)当时,求的取值范围.
已知等差数列{an}的前n项和为Sn,Sn=kn(n+1)-n(k∈R),公差d为2. (1)求an与k; (2)若数列{bn}满足,(n≥2),求bn.
已知函数和 (1)若函数在区间不单调,求的取值范围; (2)当时,不等式恒成立,求的最大值.
已知抛物线C:与直线相切,且知点和直线,若动点在抛物线C上(除原点外),点处的切线记为,过点且与直线垂直的直线记为. (1)求抛物线C的方程; (2)求证:直线相交于同一点.
已知各项均为正数的等差数列满足:,各项均为正数的等比数列满足:,. (1)求数列和的通项公式; (2)若数列满足:,其前项和为,证明.
如图,直角梯形中,,,平面平面,为等边三角形,分别是的中点,. (1)证明:; (2)证明:平面; (3)若,求几何体的体积.