如图经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种可能性大小相同,现有两辆汽车经过这个十字路口.(1)试用树状图或列表法中的一种列举出这两辆汽行驶方向所有可能的结果;(2)求至少有一辆汽车向左转的概率.
观察以下等式:
第1个等式: 1 3 × ( 1 + 2 1 ) = 2 - 1 1 ,
第2个等式: 3 4 × ( 1 + 2 2 ) = 2 - 1 2 ,
第3个等式: 5 5 × ( 1 + 2 3 ) = 2 - 1 3 ,
第4个等式: 7 6 × ( 1 + 2 4 ) = 2 - 1 4 .
第5个等式: 9 7 × ( 1 + 2 5 ) = 2 - 1 5 .
…
按照以上规律,解决下列问题:
(1)写出第6个等式: 11 8 × ( 1 + 2 6 ) = 2 - 1 6 ;
(2)写出你猜想的第 n 个等式: (用含 n 的等式表示),并证明.
如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段 AB ,线段 MN 在网格线上.
(1)画出线段 AB 关于线段 MN 所在直线对称的线段 A 1 B 1 (点 A 1 , B 1 分别为 A , B 的对应点);
(2)将线段 B 1 A 1 绕点 B 1 顺时针旋转 90 ° 得到线段 B 1 A 2 ,画出线段 B 1 A 2 .
解不等式: 2 x - 1 2 > 1 .
已知直线 l 1 : y = - 2 x + 10 交 y 轴于点 A ,交 x 轴于点 B ,二次函数的图象过 A , B 两点,交 x 轴于另一点 C , BC = 4 ,且对于该二次函数图象上的任意两点 P 1 ( x 1 , y 1 ) , P 2 ( x 2 , y 2 ) ,当 x 1 > x 2 ⩾ 5 时,总有 y 1 > y 2 .
(1)求二次函数的表达式;
(2)若直线 l 2 : y = mx + n ( n ≠ 10 ) ,求证:当 m = - 2 时, l 2 / / l 1 ;
(3) E 为线段 BC 上不与端点重合的点,直线 l 3 : y = - 2 x + q 过点 C 且交直线 AE 于点 F ,求 ΔABE 与 ΔCEF 面积之和的最小值.
如图, ΔADE 由 ΔABC 绕点 A 按逆时针方向旋转 90 ° 得到,且点 B 的对应点 D 恰好落在 BC 的延长线上, AD , EC 相交于点 P .
(1)求 ∠ BDE 的度数;
(2) F 是 EC 延长线上的点,且 ∠ CDF = ∠ DAC .
①判断 DF 和 PF 的数量关系,并证明;
②求证: EP PF = PC CF .