(梧州)如图,在正方形ABCD中,点P在AD上,且不与A、D重合,BP的垂直平分线分别交CD、AB于E、F两点,垂足为Q,过E作EH⊥AB于H.(1)求证:HF=AP;(2)若正方形ABCD的边长为12,AP=4,求线段EQ的长.
关于的一元二次方程.
(1)当时,利用根的判别式判断方程根的情况;
(2)若方程有两个相等的实数根,写出一组满足条件的,的值,并求此时方程的根.
下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.
已知:直线及直线外一点.
求作:直线,使得.
作法:如图,
①在直线上取一点,作射线,以点为圆心,长为半径画弧,交的延长线于点;
②在直线上取一点(不与点重合),作射线,以点为圆心,长为半径画弧,交的延长线于点;
③作直线.所以直线就是所求作的直线.
根据小东设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明: , ,
(填推理的依据).
在平面直角坐标系中的点和图形,给出如下的定义:若在图形上存在一点,使得、两点间的距离小于或等于1,则称为图形的关联点.
(1)当的半径为2时,
①在点,,,,,中,的关联点是 .
②点在直线上,若为的关联点,求点的横坐标的取值范围.
(2)的圆心在轴上,半径为2,直线与轴、轴交于点、.若线段上的所有点都是的关联点,直接写出圆心的横坐标的取值范围.
在等腰直角中,,是线段上一动点(与点、不重合),连接,延长至点,使得,过点作于点,交于点.
(1)若,求的大小(用含的式子表示).
(2)用等式表示线段与之间的数量关系,并证明.
在平面直角坐标系中,抛物线与轴交于点、(点在点的左侧),与轴交于点.
(1)求直线的表达式;
(2)垂直于轴的直线与抛物线交于点,,,,与直线交于点,,若,结合函数的图象,求的取值范围.