某校为了解决学生停车难的问题,打算新建一个自行车车棚,图1是车棚的示意图(尺寸如图所示),车棚顶部是圆柱侧面的一部分,其展开图是矩形.图2是车棚顶部的截面示意图,弧所在圆的圆心为,半径为3米.(1)求的度数;(2)学校准备用某种材料制作车棚顶部,请你算一算,需该种材料多少平方米?(不考虑接缝等因素,结果精确到1平方米).(第2小题的参考数据:取3.14)
在矩形ABCD中,AB=10,BC=12,E为DC的中点,连接BE,作AF⊥BE,垂足为F.(1)求证:△BEC∽△ABF;(2)求AF的长.
抛物线过点(2,-2)和(-1,10),与x轴交于A、B两点,与y轴交于C点.(1)求抛物线的解析式.(2)求△ABC的面积.
一次函数的图象与反比例函数的图象交于A(1,4)、B(﹣2,m)两点, (1)求一次函数和反比例函数的关系式; (2)画出草图,并根据草图直接写出不等式的解集.
如图,在边长为1的正方形网格中有两个三角形△ABC和△DEF,试证这两个三角形相似.
如图,在平面直角坐标系中,抛物线的顶点A的坐标为(3,15),且过点(-2,10),对称轴AB交轴于点B,点E是线段AB上一动点,以EB为边在对称轴右侧作矩形EBCD,使得点D恰好落在抛物线上,点D′是点D关于直线EC的轴对称点.(1)求抛物线的解析式;(2)若点D′恰好落在轴上的点(0,6)时,求此时D点的坐标;(3)直线CD′交对称轴AB于点F,①当点D′在对称轴AB的左侧时,且△ED′F∽△CDE,求出DE:DC的值;②连结B D′,是否存在点E,使△E D′B为等腰三角形?若存在,请直接写出BE:BC的值,若不存在请说明理由.