如图(1),∆ABC为等边三角形,AB=6,在直角三角板DEF中∠F=90°,∠FDE=60°,点D在边BC上运动,边DF始终经过点A,DE交AC于点G.
(1)求证:①∠BAD=∠CDG
②∆ABD∽∆DCG
(2)设BD=x,若CG=,求x的值;
(3)如图2,当D运动到BC中点时,点P为线段AD上一动点,连接CP,将线段CP绕着点C逆时针旋转60°得到CP' ,连接BP',DP',
①求∠CBP'的度数;②求DP'的最小值.
相关知识点
推荐套卷