如图,粮仓的顶部是圆锥形,这个圆锥的底面周长为32cm,母线长为7cm,为了防雨,需要在它的顶部铺上油毡,所需油毡的面积至少是多少?
如图,在△ABC中,∠A=30°,∠B=45°,AC=,求AB的长,
如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点 △ A B C (顶点是网格线的交点)和点 A 1 . (1)画出一个格点 △ A 1 B 1 C 1 ,并使它与 △ A B C 全等且 A 与 A 1 是对应点; (2)画出点 B 关于直线 A C 的对称点 D ,并指出 A D 可以看作由 A B 绕 A 点经过怎样的旋转而得到的.
在由m×n(m×n>1)个小正方形组成的矩形网格中,研究它的一条对角线所穿过的小正方形个数f, (1)当m、n互质(m、n除1外无其他公因数)时,观察下列图形并完成下表:
猜想:当m、n互质时,在m×n的矩形网格中,一条对角线所穿过的小正方形的个数f与m、n的关系式是______________________________(不需要证明); (2)当m、n不互质时,请画图验证你猜想的关系式是否依然成立,
在平面直角坐标系中,A、B为反比例函数的图象上两点,A点的横坐标与B点的纵坐标均为1,将的图象绕原点O顺时针旋转90°,A点的对应点为,B点的对应点为. (1)求旋转后的图象解析式; (2)求、点的坐标; (3)连结.动点从点出发沿线段以每秒1个单位长度的速度向终点运动;动点同时从点出发沿线段以每秒1个单位长度的速度向终点运动,当其中一个点停止运动时另一个点也随之停止运动.设运动的时间为秒,试探究:是否存在使为等腰直角三角形的值,若存在,求出的值;若不存在,说明理由.
如图1,在□ABCD中,AE⊥BC于E,E恰为BC的中点,. (1)求证:AD=AE; (2)如图2,点P在BE上,作EF⊥DP于点F,连结AF. 求证:; (3)请你在图3中画图探究:当P为射线EC上任意一点(P不与点E重合)时,作EF⊥DP于点F,连结AF,线段DF、EF与AF之间有怎样的数量关系?直接写出你的结论.