如图,已知圆O的直径AB=4,定直线L到圆心的距离为4,且直线L⊥直线AB。点P是圆O上异于A、B的任意一点,直线PA、PB分别交L与M、N点。试建立适当的直角坐标系,解决下列问题:(1)若∠PAB=30°,求以MN为直径的圆方程;(2)当点P变化时,求证:以MN为直径的圆必过圆O内的一定点。
(本小题满分12分)已知椭圆,左焦点到直线x一y一2=0的距离为,左焦点到左顶点的距离为.(Ⅰ)求椭圆的方程;(Ⅱ)直线l过点M(2,0)交椭圆于A,B两点,是否存在点N(t,0),使得,若存在,求出t的取值范围;若不存在,说明理由.
(本小题满分12分)某市为了对公租房的租金实施办法进行研究,用分层抽样方法从A,B,C三个社区的相关家庭中,抽取若干户家庭进行调研,有关数据见下表(单位:户)(Ⅰ)求x,y;(Ⅱ)若从B、C两个片区抽取的家庭中随机选2户家庭参加实施办法的听证会,求这2户家庭都来自C片区的概率.
(本小题满分12分)如图,四棱锥S一ABCD中,已知AD∥BC,∠ADC=90°,∠BAD=135°,AD=DC=,SA=SC=SD=2.(Ⅰ)求证:AC⊥SD;(Ⅱ)求三棱锥的体积.
(本小题满分12分)如图,为测得河对岸某建筑物AB的高,先在河岸上选一点C,使C在建筑物底端B的正东方向上,测得点A的仰角为60°,再由点C沿东偏北75°方向走20米到达位置D,测得∠BDC=30°。(Ⅰ)求sⅠn∠BCD的值;(Ⅱ)求此建筑物的高度.
(本小题满分10分)选修4—5:不等式选讲已知函数(Ⅰ)求的最大值;(Ⅱ)若关于x的不等式有实数解,求实数k的取值范围.