已知中,,,为的中点,分别在线段上的动点,且,交于,把沿折起,如下图所示,(Ⅰ)求证:平面;(Ⅱ)当二面角为直二面角时,是否存在点,使得直线与平面所成的角为,若存在求的长,若不存在说明理由。
如图,四棱锥中,底面为平行四边形,,,⊥底面.(1)证明:平面平面; (2)若,求与平面所成角的正弦值.
已知是二次函数,方程有两相等实根,且(1)求的解析式.(2)求函数与函数所围成的图形的面积.
(本题12分)设函数在内有极值。(1)求实数的取值范围;(2)若分别为的极大值和极小值,记,求S的取值范围。(注:为自然对数的底数)
(本题10分)已知函数(1)利用函数单调性的定义,判断函数在上的单调性;(2)若,求函数在上的最大值。
(本题10分)已知(),(1)当时,求的值;(2)设,试用数学归纳法证明:当时, 。