(本小题满分12分)如图,以原点O为顶点,以y轴为对称轴的抛物线E的焦点为F(0,1),点M是直线上任意一点,过点M引抛物线E的两条切线分别交x轴于点S,T,切点分别为B,A。(Ⅰ)求抛物线E的方程;(Ⅱ)求证:点S,T在以FM为直径的圆上;
已知直线l与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l的方程: (1)过定点A(﹣3,4); (2)斜率为.
在△ABC中,已知点A(5,﹣2)、B(7,3),且边AC的中点M在y轴上,边BC的中点N在x轴上. (1)求点C的坐标; (2)求直线MN的方程.
(1)求经过点A(﹣5,2)且在x轴上的截距等于在y轴上的截距的2倍的直线方程. (2)过点A(8,6)引三条直线l1,l2,l3,它们的倾斜角之比为1:2:4,若直线l2的方程是y=x,求直线l1,l3的方程.
△ABC的三个顶点为A(﹣3,0),B(2,1),C(﹣2,3),求: (1)BC所在直线的方程; (2)BC边上中线AD所在直线的方程; (3)BC边上的垂直平分线DE的方程.
如图,圆周上点A依逆时针方向做匀速圆周运动.已知A点1分钟转过θ(0<θ<π)角,2分钟到达第三象限,14分钟后回到原来的位置,求θ.