已知等差数列{an}的前n项和为Sn,公差d≠0,且成等比数列.(1)求数列{an}的通项公式;(2)设是首项为1,公比为3的等比数列,求数列{bn}的前n项和Tn.
已知△ABC中,A(4,2),B(1,8),C(-1,8). (1)求AB边上的高所在的直线方程; (2)直线//AB,与AC,BC依次交于E,F,.求所在的直线方程。
集合,集合. (1)当时,判断函数是否属于集合?并说明理由.若是,则求出区间; (2)当时,若函数,求实数的取值范围; (3)当时,是否存在实数,当时,使函数,若存在,求出的范围,若不存在,说明理由.
已知,. (1)当; (2)当,并画出其图象; (3)求方程的解.
已知函数有如下性质:如果常数,那么该函数在上是减函数,在上是增函数. (1)如果函数在上是减函数,在上是增函数,求的值; (2)证明:函数(常数)在上是减函数; (3)设常数,求函数的最小值和最大值.
定义在[-1,1]上的偶函数f(x),已知当x∈[0,1]时的解析式为(a∈R). (1)求f(x)在[-1,0]上的解析式; (2)求f(x)在[0,1]上的最大值h(a).