如图,在直三棱柱中,,点分别为和的中点.(1)证明:平面;(2)平面MNC与平面MAC夹角的余弦值.
(本小题满分12分)已知向量,函数.(Ⅰ)求函数的最小正周期;(Ⅱ)已知、、分别为内角、、的对边, 其中为锐角,,且,求和的面积.
(本小题满分12分)设集合,,分别从集合和中随机取一个数和.(Ⅰ)若向量,求向量与的夹角为锐角的概率;(Ⅱ)记点,则点落在直线上为事件,求使事件的概率最大的.
(本小题满分10分)选修4-5:不等式选讲设函数.(Ⅰ)求不等式的解集;(Ⅱ)若,恒成立,求实数的取值范围.
(本小题满分10分)选修4-4:坐标系与参数方程已知在直角坐标系中,圆锥曲线的参数方程为(为参数),定点,是圆锥曲线的左,右焦点.(Ⅰ)以原点为极点、轴正半轴为极轴建立极坐标系,求经过点且平行于直线的直线的极坐标方程;(Ⅱ)在(I)的条件下,设直线与圆锥曲线交于两点,求弦的长.
(本小题满分10分)选修4-1:几何证明选讲如图,直线经过⊙上的点,并且⊙交直线于,,连接.(Ⅰ)求证:直线是⊙的切线;(Ⅱ)若⊙的半径为,求的长.