某地为迎接2014年索契冬奥会,举行了一场奥运选拔赛,其中甲、乙两名运动员为争取最后一个参赛名额进行的7轮比赛,其得分情况如茎叶图所示:(1)若从甲运动员的不低于80且不高于90的得分中任选3个,求其中与平均得分之差的绝对值不超过2的概率;(2)若分别从甲、乙两名运动员的每轮比赛不低于80且不高于90的得分中任选1个,求甲、乙两名运动员得分之差的绝对值的分布列与期望.
已知函数(1)若,求函数的单调区间;(2)若,且对于任意不等式恒成立,试确定实数的取值范围;(3)构造函数,求证:
如图,在三棱锥中,是边长为4的正三角形,平面平面,,为的中点.(1)证明:;(2)求二面角的余弦值;(3)求点到平面的距离.
设函数 求证:当时,函数在区间上是单调递减函数;求的取值范围,使函数在区间上是单调函数.
已知一个圆锥的母线长为20cm,当圆锥的高为多少时体积最大?最大体积是多少?
(1)已知,,,,其中三向量不共面.试判断A,B,C,D四点是否共面?(2)设,,,.试问是否存在实数,使成立?如果存在,求出;如果不存在,请给出理由.