斜三棱柱,其中向量,三个向量之间的夹角均为,点分别在上且,=4,如图(Ⅰ)把向量用向量表示出来,并求;(Ⅱ)把向量用表示;(Ⅲ)求与所成角的余弦值.
已知{an}是等比数列,a1=2,a3=18,{bn}是等差数列b1=2,b1+b2+b3+b4=a1+a2+a3>20(1)求数列{bn}的通项公式;(2)求数列{bn}的前n项和Sn;(3)设Pn=b1+b4+b7+…+b3n-2,Qn=b10+b12+b14+…+b2n+8,其中n="1," 2……,试比较Pn与Qn的大小并证明你的结论。
已知y=,试求它的反函数以及反函数的定义域和值域。
求函数y=-(log)2-(log)+5在2≤x≤4范围内的最大值和最小值,以及对应的x的值。
(1)已知a2x-3x+1>ax+2x-1(a>0且a≠1)求x的取值范围。(2)求函数y=的定义域以及单调递增区间。
已知等差数列{an}的前n项中a1是最小的,且a1+a4=6,a2·a3=5,Sn=150,求n的值。