设二次函数的图像过原点,,的导函数为,且,(1)求函数,的解析式;(2)求的极小值;(3)是否存在实常数和,使得和若存在,求出和的值;若不存在,说明理由.
如图所示,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.(1)证明:DB=DC;(2)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.
已知函数.(1)讨论函数在定义域内的极值点的个数;(2)若函数在处取得极值,对,恒成立,求实数的取值范围;(3)当且时,试比较的大小
(本小题满分12分)已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切,过点且不垂直于轴的直线与椭圆相交于、两点.(1)求椭圆的方程;(2)求的取值范围;(3)若点关于轴的对称点是,证明:直线与轴相交于定点.
如图, 四棱柱ABCD-A1B1C1D1中, 侧棱A1A⊥底面ABCD, AB//DC, AB⊥AD, AD =" CD" =" 1," AA1 =" AB" =" 2," E为棱AA1的中点.(1) 证明B1C1⊥CE; (2) 求二面角B1-CE-C1的正弦值.(3) 设点M在线段C1E上, 且直线AM与平面ADD1A1所成角的正弦值为, 求线段AM的长.
近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机对入院的50人进行了问卷调查得到了如下的列联表:
已知在调查的50人中随机抽取1人,抽到患心肺疾病的人的概率为.(1)请将上面的列联表补充完整;(2)是否有的把握认为患心肺疾病与性别有关?说明你的理由;(3)已知在患心肺疾病的10位女性中,有3位又患胃病.现在从患心肺疾病的10位女性中,抽取3名进行其他方面的排查,记抽取患胃病的女性人数为,求的分布列,数学期望以及方差;大气污染会引起各种疾病,试浅谈日常生活中如何减少大气污染.下面的临界值表供参考:(参考公式 其中)