已知点直线AM,BM相交于点M,且.(1)求点M的轨迹的方程;(2)过定点(0,1)作直线PQ与曲线C交于P,Q两点,且,求直线PQ的方程.
(本小题满分14分)已知曲线经过点A(2,1),过A作倾斜角互补的两条不同直线.(Ⅰ)求抛物线的方程及准线方程;(Ⅱ)当直线与抛物线相切时,求直线与抛物线所围成封闭区域的面积;(Ⅲ)设直线分别交抛物线于B,C两点(均不与A重合),若以线段BC为直径的圆与抛物线的准线相切,求直线BC的方程.
(本小题满分12分)已知函数,其中为实常数。(1)当时,恒成立,求的取值范围;(2)求函数的单调区间。
(本小题满分12分)在数列{an}中,a1=1,当n≥2时,an,Sn,Sn-成等比数列 (1)求a2,a3,a4,并推出an的表达式;(2)用数学归纳法证明所得的结论;
如图,在三棱柱中,已知,侧面(1)求直线C1B与底面ABC所成角的正弦值;(2)在棱(不包含端点上确定一点的位置,使得(要求说明理由).(3)在(2)的条件下,若,求二面角的大小.
(本小题满分12分) 某计算机程序每运行一次都随机出现一个二进制的六位数,其中 的各位数中,,(2,3,4,5)出现0的概率为,出现1的概率为,记,当该计算机程序运行一次时,求随机变量X的分布列和数学期望.