(本小题满分14分)已知曲线经过点A(2,1),过A作倾斜角互补的两条不同直线.(Ⅰ)求抛物线的方程及准线方程;(Ⅱ)当直线与抛物线相切时,求直线与抛物线所围成封闭区域的面积;(Ⅲ)设直线分别交抛物线于B,C两点(均不与A重合),若以线段BC为直径的圆与抛物线的准线相切,求直线BC的方程.
已知数列满足:,,数列满足,.(Ⅰ)求数列的通项; (Ⅱ)求证:数列为等比数列;并求数列的通项公式.
选修4—5:不等式选讲设正有理数是的一个近似值,令. (Ⅰ)若,求证:; (Ⅱ)比较与哪一个更接近于?
选修4-4:坐标系与参数方程选讲. 在极坐标系中, O为极点, 半径为2的圆C的圆心的极坐标为. (1)求圆C的极坐标方程; (2)在以极点O为原点,以极轴为x轴正半轴建立的直角坐标系中,直线的参数方程为(t为参数),直线与圆C相交于A,B两点,已知定点,求|MA|·|MB|。
选修4-1:几何证明选讲.如图,是⊙的直径,是⊙的切线,与的延长线交于点,为切点.若,,的平分线与和⊙分别交于点、,求的值。
设函数 (1)若关于x的不等式在有实数解,求实数m的取值范围; (2)设,若关于x的方程至少有一个解,求p 的最小值. (3)证明不等式: