(本小题满分14分)已知曲线经过点A(2,1),过A作倾斜角互补的两条不同直线.(Ⅰ)求抛物线的方程及准线方程;(Ⅱ)当直线与抛物线相切时,求直线与抛物线所围成封闭区域的面积;(Ⅲ)设直线分别交抛物线于B,C两点(均不与A重合),若以线段BC为直径的圆与抛物线的准线相切,求直线BC的方程.
已知半径为5的圆的圆心在轴上,圆心的横坐标是整数,且与直线相切.求:(1)求圆的方程;(2)设直线与圆相交于两点,求实数的取值范围;(3)在(2)的条件下,是否存在实数,使得过点的直线垂直平分弦?若存在,求出实数的值;若不存在,请说明理由.
已知函数对任意实数恒有且当时,有且.(1)判断的奇偶性;(2)求在区间上的最大值;(3)解关于的不等式.
已知点在圆上运动,,点为线段MN的中点.(1)求点的轨迹方程;(2)求点到直线的距离的最大值和最小值..
如图,四棱锥P-ABCD的底面是矩形,侧面PAD丄底面ABCD,.. (1)求证:平面PAB丄平面PCD (2)如果AB=BC=2,PB=PC=求四棱锥P-ABCD的体积.
设直线的方程为.(1)若在两坐标轴上的截距相等,求的方程;(2)若不经过第二象限,求实数的取值范围。