设双曲线以椭圆的两个焦点为焦点,且双曲线的一条渐近线是,(1)求双曲线的方程;(2)若直线与双曲线交于不同两点,且都在以为圆心的圆上,求实数的取值范围.
已知椭圆的中心在坐标原点,焦点在轴上,离心率为,椭圆的短轴端点和焦点所组成的四边形周长等于8。 (Ⅰ)求椭圆的方程; (Ⅱ)若过点的直线与椭圆相交于两点(不是左右顶点),且以为直径的圆过椭圆的右顶点,求直线的方程。
已知数列满足:且. (Ⅰ)求,,,的值及数列的通项公式; (Ⅱ)设,求数列的前项和;
已知斜三棱柱,,,在底面上的射影恰为的中点,又知. (Ⅰ)求证:平面; (Ⅱ)求到平面的距离; (Ⅲ)求二面角的大小。
某车站每天上午发出两班客车,第一班客车在8∶00,8∶20,8∶40这三个时刻随机发出,且在8∶00发出的概率为,8∶20发出的概率为,8∶40发出的概率为;第二班客车在9∶00,9∶20,9∶40这三个时刻随机发出,且在9∶00发出的概率为,9∶20发出的概率为,9∶40发出的概率为 .两班客车发出时刻是相互独立的,一位旅客预计8∶10到站.求: (1)请预测旅客乘到第一班客车的概率; (2)旅客候车时间的分布列; (3)旅客候车时间的数学期望。
已知函数。 (1)求的对称轴; (2)在中,已知,求。